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We present a study of thermodynamic properties of suspensions of charged colloids on the basis of linear
Poisson-Boltzmann theory. We calculate the effective Hamiltonian of the colloids by integrating out the ionic
degrees of freedom grand canonically. This procedure not only yields the well-known pairwise screened-
Coulomb interaction between the colloids, but also additional volume terms that affect the phase behavior and
the thermodynamic properties, such as the osmotic pressure. These calculations are greatly facilitated by the
grand-canonical character of our treatment of the ions and allow for relatively fast computations compared to
earlier studies in the canonical ensemble. Moreover, the present derivation of the volume terms are relatively
simple, make a direct connection with Donnan equilibrium, yield an explicit expression for the effective
screening constant, and allow for extensions to include, for instance, nonlinear effects.
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I. INTRODUCTION

Colloidal suspensions are multicomponent systems that
consist of mesoscopic colloidal particles dispersed in a mo-
lecular solvent. Often other chemical components are present
as well, e.g., ions, polymers, or proteins. Predicting or un-
derstanding the properties of such mixtures from a micro-
scopic perspective is generally complicated because the large
asymmetry in size and charge between the colloids and the
other components, in practice, inhibits a treatment of all the
components on an equal footing. The standard way out is to
regard the suspension as an effective colloids-only system in
which all microscopic degrees of freedom of the “medium”
�solvent, ions, polymers, etc.� are suitably averaged out.

For instance, in the case of colloidal hard spheres in a
medium with nonadsorbing ideal polymers �radius of gyra-
tion Rg� the so-called depletion effect �1,2� leads to effective
attractions between pairs of colloids at surface-surface sepa-
rations less than 2Rg, and in the case of charged colloidal
spheres in an electrolyte with Debye length �−1 the effective
interaction between a colloidal pair at center-to-center sepa-
ration r is generally written as a repulsive screened-Coulomb
potential � exp�−�r� /r. The advantage of such a one-
component viewpoint is that all of the machinery of classical
one-component fluids �integral equations, perturbation
theory, simulation, etc.� can be employed to study the prop-
erties of colloidal suspensions, but only after a reliable aver-
aging over the medium has been performed. Performing this
averaging explicitly is generally a tremendous statistical me-
chanics problem that can only be solved approximately, in
most cases �3–5�.

One important problem is that the effective colloidal in-
teractions are not necessarily pairwise additive, i.e., triplet or
higher-order many-body potentials may appear even if the
underlying interactions in and with the medium are strictly
pairwise. On physical grounds one generally expects the
breakdown of pairwise additivity of the effective interactions
if the typical length scale in the medium is of the order of the
typical colloidal length scale, e.g., the colloidal radius a. For
colloid-polymer mixtures, it was indeed shown that equal-

sized colloids and polymers �Rg=a� have bulk and interfacial
properties that differ dramatically from pairwise predictions
�6,7�, and charged colloids in an electrolyte were shown to
exhibit non-negligible effective triplet attractions on top of
the pairwise repulsions �8� at �extremely� low salt concentra-
tions where �−1�a.

In this paper we will focus on a description of effective
interactions �or the effective Hamiltonian� in bulk suspen-
sions of charged colloids. The classical theory for these sys-
tems dates back to the 1940s, when Derjaguin and Landau
�9� and Verwey and Overbeek �10� independently calculated
that the effective potential between two identical homoge-
neously charged colloidal spheres �radius a, total charge −Ze
with e the proton charge� in a bulk medium with dielectric
constant � and Debye length �−1 is given by

V2�r� = �� r � 2a

Z2e2

�
� exp��a�

1 + �a
�2exp�− �r�

r
; r � 2a .

�1�

Here and in the remainder of this paper, we ignore the dis-
persion forces and recall that � is defined as

�2 = 8�	Bcs �2�

in the case of a 1:1 electrolyte with total ion concentration
2cs far from the colloids, where 	B=
e2 /� is the Bjerrum
length, 
=1/kBT, and T the temperature �9,10�.

It is well established by now that many properties of sus-
pensions of N�1 charged colloids in a solvent volume V
�density n=N /V� can be understood on the basis of the pair-
wise effective Hamiltonian

H2�	R
� = �
i�j

N

V2�Rij� , �3�

where Ri denotes the position of colloid i=1, . . . ,N and
Rij = �Ri−R j�. For instance, the thermodynamic equilibrium
properties and the phase behavior follow from the Helmholtz
free energy F2�N ,V ,T�, defined as the classical canonical
phase-space integral
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exp�− 
F2� =
1

N!VN

V

dRN exp�− 
H2�

� trc exp�− 
H2� , �4�

where V is an irrelevant constant volume �accounting for the
internal partition function of the colloids�, which we include
for dimensional reasons, and where we introduced the short-
hand notation trc for the classical canonical trace over the
colloid degrees of freedom. On the basis of Eqs. �1�, �3�, and
�4�, one can explain many experimental observations, includ-
ing the crystallization of �essentially� hard spheres �Z=0 or
�a�1� at packing fractions �=4�a3n /3�0.5 into an fcc
crystal �11,12�, the crystallization into bcc crystals for suffi-
ciently soft spheres �13,14�, the measured osmotic equation
of state �15,16�, structure factor �17,18�, radial distribution
function �19�, pair interactions �20,21�, and many other col-
loidal phenomena. It is therefore fair to state that the
Derjaguin-Landau–Verwey-Overbeek �DLVO� theory as de-
scribed by the Eqs. �1�, �3�, and �4� is one of the cornerstones
of colloid science.

It is, however, also fair to add that not all experimental
observations are in �qualitative� agreement with DLVO
theory. For instance, the experimental observation of “voids”
and “Swiss-cheese” structures in otherwise homogeneous
suspensions have been interpreted as manifestations of gas-
liquid coexistence �22,23�, and the small lattice spacing of
colloidal crystals compared to the one expected on the basis
of the known density n was interpreted as evidence for gas-
crystal coexistence �24�. These possibilities seemed to be
confirmed by direct observations of �meta-�stable gas-crystal
coexistence �25�, and a macroscopic gas-liquid meniscus
�26�, although these observations were disputed by others
�27,28�.

Despite the ongoing debates due to a lack of experimental
consensus, these experimental results, which were all per-
formed at low ionic strength with cs in the micromolar re-
gime, triggered a lot of theoretical activities to find the
source of cohesive energy that stabilizes the dense liquid or
crystal phase in coexistence with a much more dilute gas
phase. The dispersion forces would be the first natural can-
didate to provide the cohesion, but their approximate nano-
meter range is generally considered to be too small to domi-
nate over the electrostatic repulsions with a range of �−1

�100 nm at these low salt concentrations.
It was, for instance, found that ion-ion correlations, which

are ignored in the derivation of V2�r�, can lead to attractive
contributions to the pair potential. However, the effect is
small and too short ranged for monovalent ions at room tem-
perature in water �13�.

Another avenue of research considered the possibility of
the breakdown of pairwise additivity due to non-negligible
effective triplet and higher-order forces. Within Poisson-
Boltzmann theory, the triplet potential was calculated and
turned out to be attractive, indeed �8�, thereby suggesting
that many-body interactions could be the source of cohesive
energy. Phase diagrams based on repulsive pair interactions
�1� and the attractive triplet potential indeed showed coexist-
ence of a dilute gas with very dense crystal phases �as well as

crystal-crystal coexistence� �29,30�, while experimental evi-
dence for the breakdown of pairwise additivity was obtained
by an inverse Ornstein-Zernike analysis of measured colloi-
dal radial distribution functions �31–33�, as well as by direct
measurement �34,35�. Thus, although pairwise additivity
seems to be breaking down at low salinity, it is yet question-
able whether an approach based on the explicit calculation of
triplet and higher-order potentials, if feasible at all, is very
efficient, as convergence is probably slow in the regime of
strong triplet attractions: there is hardly any justification to
ignore the four-body potential when including the triplet po-
tential changes the phase diagram completely compared to
the pairwise case. This notion was made explicit by a recent
simulation study of the primitive model �charged colloids
and explicit microions� that underlies the effective one-
component system of Ref. �30�: the gas-crystal coexistence
that was found with included triplet interactions disappeared
again in the simulations of the multicomponent simulation
�36�.

An alternative representation of nonpairwise interactions
is based on density-dependent pair potentials. Roughly
speaking, this implies that the explicit coordinate depen-
dence of higher-body potentials is smeared out to reduce to
density dependence in the pair interactions. In the case of
charged colloids, it seems natural to modify the form of the
screening constant such that not only the background �reser-
voir� salt concentration 2cs but also the finite concentration
Zn of the counterions and the hard-core exclusion from the
colloidal volume is taken into account. For instance, one
replaces � by �̃=�4�	B�2cs+Zn�, �4�	B�2cs+Zn� / �1−��
or similar expressions �13,37–44� that reduce in the dilute
limit n→0 to � as given by Eq. �2�. Often �̃�n���, and one
could interpret the resulting reduction of the pairwise repul-
sions due to the more efficient screening at higher density as
an effective attractive many-body effect.

Interestingly, however, a careful analysis of the total free
energy of the suspension reveals that a density-dependent
screening constant affects not only the pair interactions but
also one-body contributions, such as the free energy of each
colloid with its “own” diffuse cloud of counterions
�38–43,45–47�. The thickness of this double layer is typi-
cally �̃−1, and hence, its typical �free� energy is of the order
of −�Ze�2 /��a+ �̃−1� �i.e., the Coulomb energy of two
charges ±Ze at separation a+ �̃−1�. This term lowers progres-
sively with increasing n and thus provides cohesive energy,
whereas it is an irrelevant constant offset of the free energy if
a constant � is taken instead of �̃�n�. It was shown that the
density dependence of these so-called volume terms could
drive a gas-liquid spinodal instability at low salt concentra-
tions �38,40,46,47� and could hence �qualitatively� explain
some of the puzzling experimental observations.

There are several reasons, however, to revisit the theories
of, e.g., Refs. �38,40,46,47�. First of all, they are formulated
in the canonical ensemble �fixed ion concentrations�, which
not only obscures its close relationship with the classical
Donnan theory for colloidal suspensions �48,49�, but also
unnecessarily complicates the numerical calculation of phase
diagrams as we will argue in Sec. II.

Moreover, and more importantly, the derivation of the ex-
plicit expressions for the total free energy was perhaps not
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very transparent in Refs. �46,47�, and may have hindered
extensions of the theory to include, for instance, charge
renormalization. This nonlinear effect was first studied in a
cell geometry �50� and, more recently, in a jelliumlike model
�51,52�. In both of those models, the nonlinear character of
the theory is retained, while its complicated multicentered
nature is replaced by a radially symmetric structure. The ef-
fective colloidal charge Z* that appears in the prefactor of the
DLVO repulsions is then reduced from its bare value Z due
to a tightly adsorbed layer of counterions in the vicinity of
the colloidal surface. This effect is important when Z	B/a
�1 �50,53–56� and therefore casts serious doubt �57� on the
predictions of the gas-liquid and gas-crystal transitions in,
e.g., Refs. �38,46,47� since large values of Z were needed to
have the transitions �52,58�. If one now realizes that Z* de-
pends on n and �̃�n�, as was shown in, e.g., Ref. �53�, it is
easy to imagine that the volume terms are affected nontrivi-
ally by charge renormalization similarly as by the n depen-
dence of the screening parameter. It is therefore important to
be able to include this effect into volume-term-type theories
and hence to reformulate these theories as transparently as
possible.

In order to be able to address all these issues, we revisit
here the purely linear screening theory with volume terms.
Its nonlinear extension to include charge renormalization
will be discussed in a forthcoming paper �59�. The present
paper is organized as follows. In Sec. II, we introduce the
microscopic Hamiltonian H of the colloid-ion mixture and
give formal expressions for the effective Hamiltonian H for
the colloids. In Sec. III, we calculate H by minimizing the
mean-field grand potential functional of the ions, whereby
explicit expression for the density-dependent screening pa-
rameter, the Donnan potential, and the Donnan effect are
obtained as intermediate results. In Sec. IV, we consider the
thermodynamics of the suspension, in particular, the free en-
ergy and the osmotic pressure, with a few interesting cancel-
ing contributions. In Sec. V, we calculate a few phase dia-
grams. We conclude and summarize in Sec. VI.

II. HAMILTONIAN, DONNAN ENSEMBLE, AND
EFFECTIVE HAMILTONIAN

We consider a suspension of N identical colloidal spheres
�radius a, positions Ri, charge −Ze homogeneously distrib-
uted on the surface� in a continuum solvent of volume V
characterized by a dielectric constant � at temperature T. The
density of the colloids is denoted by n=N /V. In addition
there are N+ and N− monovalent point like cations �+� and
anions �−� present, respectively, and charge neutrality dic-
tates that N+=N−+ZN. The total interaction Hamiltonian of
the system can therefore be written as

H = Hcc + Hcs + Hss, �5�

where the bare colloid-colloid Hamiltonian Hcc, the colloid-
salt Hamiltonian Hcs, and the salt-salt Hamiltonian Hss are
pairwise sums of hard-core and �unscreened� Coulomb po-
tentials. We write Hcc=�i�j

N Vcc�Rij� with


Vcc�r� = �� r � 2a;

Z2	B

r
r � 2a ,

�6�

and Hcs=Hc++Hc− with Hc±=�i=1
N � j=1

N± Vc±��Ri−r j
± � �, where


Vc±�r� = �� r � a;



Z	B

r
r � a ,

�7�

and r j
± is the position of the jth positive �negative� microion.

The expression for Hss is similar, but without the hard-core
terms because of the pointlike nature of the ions.

In principle, the thermodynamic properties of this system
could be calculated from the Helmholtz free energy of the
system F�N ,N− ,V ,T�, which is defined by exp�−
F�
=trctr+tr−exp�−
H�. The canonical traces are defined as in
Eq. �4�. Note that one can ignore the explicit N+ dependence
of F because of the charge neutrality condition.

Within linearized Poisson-Boltzmann theory and exploit-
ing the Gibbs-Bogolyubov inequality, F was explicitly cal-
culated in Refs. �46,47�. The phase diagram was then con-
structed from F by imposing the usual conditions of
mechanical and diffusive equilibrium, viz.

�P�n�1�,n−
�1�� = P�n�2�,n−

�2��
��n�1�,n−

�1�� = ��n�2�,n−
�2��

�−�n�1�,n−
�1�� = �−�n�2�,n−

�2�� ,

�8�

where n�i� and n−
�i� denote the colloid density and the anion

density in phase i, respectively, and where we introduced the
pressure P=−��F /�V�, the colloidal chemical potential �
= ��F /�N�, and the anion chemical potential �−= ��F /�N−�.
The system �8� of three equations for the four unknown den-
sities yielded the phase diagram in the n−n− plane, for given
parameters Z, a, and 	B.

These canonical ensemble calculations were, however,
numerically rather demanding, since many numerically ex-
pensive evaluations of P�n ,n−�, ��n ,n−�, and �−�n ,n−� are
needed in the root-finding procedure of solving Eqs. �8�. For
that reason the phase diagram of only a few combinations of
parameters Z, 	B, and a has been studied in some detail.
Moreover, the derivation of the explicit expressions for F
was, perhaps, not very transparent and may have hindered
extensions of the theory to include, for instance, nonlinear
effects such as charge renormalization. Additionally, the
�strong� connection with the standard description of colloidal
suspensions in terms of a Donnan equilibrium was not made
in Refs. �46,47�.

It turns out, as we will show in this paper, that at least
some of these shortcomings and drawbacks of working in the
canonical ensemble can be lifted by treating the anions and
cations grand canonically. For this we assume the suspension
to be in diffusive contact with a dilute reservoir of monova-
lent anions and cations at chemical potential �±
=kBTln�cs�±

3�, where 2cs is the total ion density in the
�charge neutral� reservoir, and where �± is the thermal wave-
length of the cations �+� and anions �−�, respectively. The
colloidal particles cannot enter the ion reservoir �e.g., be-
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cause of a semipermeable membrane in an actual experimen-
tal setting� and remain treated canonically �fixed N and V� as
before. The thermodynamic potential of this ensemble,
which we will call the “Donnan ensemble” from now on, is
denoted F=F−�+N+−�−N−, and is a function of the vari-
ables N, V, T, and �±. It is related to the microscopic Hamil-
tonian by the “Donnan partition function”

exp�− 
F� = trcTr+Tr−exp�− 
H� , �9�

where H was defined in Eq. �5� and the grand-canonical
traces are defined as

Tr± = �
i=1

N±

exp�
�±N±�tr± = �
i=1

N± cs
N±

N±!

 dr±

N±. �10�

Here we have used that exp�
�±� /�±
3 =cs �where the factor

1 /�±
3 follows from the classical momentum integration�, and

we denoted the microion coordinates by r±
N±. For conve-

nience we will drop the explicit T dependence from now on
and replace the dependence on �± by the reservoir concen-
tration cs.

Because of the extensive character of F, we can write
F�N ,V ,cs�=Vf�n ,cs�. The thermodynamic properties follow
now as �= ��F /�N�= ��f /�n� and P=−��F /�V�=n�− f ,
where the derivatives are to be taken at fixed cs and T. This
implies that the phase-coexistence conditions simplify to the
two conditions

�P�n�1�,cs� = P�n�2�,cs�;
��n�1�,cs� = ��n�2�,cs� ,

�11�

for the two unknown colloid densities n�i�, at fixed cs, i.e., we
have prearranged equal chemical potential of the ions due to
our choice to work in the Donnan ensemble. This is a con-
siderable reduction of the numerical effort compared to Eqs.
�8�. Note that the mechanical equilibrium condition is
equivalent to equal osmotic pressure � in the two coexisting
phases, where ��n ,cs�= P�n ,cs�− P�0,cs� is the suspension’s
excess pressure over the reservoir pressure P�0,cs�=2cskBT
�recall that we treated the reservoir as an ideal gas here�. This
simple relation allows for a rather direct contact with experi-
mental measurements of the osmotic pressure, as we will
also show below.

Even though our main objective is to calculate F�N ,V ,cs�
as defined in Eq. �9�, we will first focus on an important and
convenient intermediate quantity: the effective Hamiltonian
H, which depends on the colloid configuration 	R
 and para-
metrically on the reservoir salt concentration cs. It is defined
as

exp�− 
H� = Tr+Tr− exp�− 
H�

= exp�− 
Hcc�Tr+Tr− exp�− 
Hcs − 
Hss�

� exp�− 
Hcc�exp�− 
�� �12�

where, in the last step, we defined the grand partition func-
tion exp�−
�� of the inhomogeneous system of interacting
cations and anions �through Hss� in the external potential of
the colloids �through Hcs�. The corresponding grand poten-
tial of this system is �, which is the quantity that we need to

calculate in order to find the effective Hamiltonian given
from Eq. �12� as

H = Hcc + � . �13�

Once H is known, we can use standard one-component tech-
niques to obtain approximate expressions for F, since
exp�−
F�=trc exp�−
H� is precisely as if F were the Helm-
holtz free energy of a one-component system with Hamil-
tonian H.

III. GRAND POTENTIAL �

A. Density functional

We will not explicitly calculate � from the grand partition
function of Eq. �12�. Instead, we exploit the framework of
classical density functional theory �DFT�, which treats an
inhomogeneous fluid in an external field at the level of the
one-body distribution functions �the density profiles�
�60–62�: the equilibrium density profiles minimize the
�variational� grand potential functional, and this minimum is
the grand potential. Here we denote the density profile of the
cations by �+�r�, that of the anions by �−�r�, and the grand-
potential functional by ���+ ,�−�. For notational conve-
nience, we do not introduce a separate notation for the varia-
tional and equilibrium profiles, and neither for the grand-
potential functional and its minimum �equilibrium� value.

The cations and anions experience external potentials
U+�r� and U−�r�, respectively, due to the Coulomb and ex-
cluded volume interactions with a fixed configuration 	R
 of
colloidal particles. These potentials are explicitly given by

U±�r� = �
i=1

N

Vc±��Ri − r�� , �14�

where the colloid-ion pair potentials Vc±�r� were defined in
Eq. �7�. We can now write the grand potential functional
within a simple mean-field approximation as

���+,�−� = �id��+� + �id��−� +
e2

2�

 drdr�

��r���r��
�r − r��

+
 dr��+�r�U+�r� + �−�r�U−�r�� , �15�

where we defined the ion charge density ��r�=�+�r�−�−�r�,
and where the ideal-gas grand potential functional can be
written as

�id��±� =
 dr�±�r�	− �± + kBT �ln�±�r��±
3 − 1�


= kBT
 dr�±�r��ln
�±�r�

cs
− 1� . �16�

Here we have substituted the identity �±=kBT ln cs�±
3.

The Euler-Lagrange equations �� /��±�r�=0 that corre-
spond with Eq. �15�, can be cast, for r outside a colloidal
hard core, into the form �±�r�=csexp�
��r��. The dimen-
sionless potential ��r� must then satisfy the nonlinear mul-
ticentered Poisson-Boltzmann equation �63�
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�2��r� = �2sinh��r� −
Z	B

a2 �
i=1

N

���r − Ri� − a� , �17�

where ��r� is the Dirac �. Unfortunately, no analytical solu-
tion to Eq. �17� is known for the multicentered geometry of
interest here. Even solving Eq. �17� numerically is far from
trivial and requires a serious computational effort �64–69�.

For this reason, we will first make further approximations
to the functional and then perform its minimization after-
ward. The main approximation involves the expansion, up to
quadratic order, of the ideal-gas grand potential terms about
the, as of yet unknown, ion densities �̄±, such that �±�r�
− �̄± are considered to be the “small” expansion parameters.
This expansion yields �id��±���id� ��±� with


�id� ��±� = �̄±�ln
�̄±

cs
− 1�V + ln

�̄±

cs

 dr��±�r� − �̄±�

+
1

2�̄±

 dr��±�r� − �̄±�2. �18�

In principle, this expansion holds for arbitrary �̄±, but later
on we will choose �̄± to be equal to the average ion concen-
trations in the system, such that �dr��±�r�− �̄±�=0, i.e.,
V�̄±=N± is the number of ions in the suspension. As will be
shown below, this linearization corresponds to a linearization
of Eq. �17� about ��r�= �̄ with �̄ the Donnan potential. This
is in line with Ref. �70�.

It turns out to be convenient, and necessary, to rewrite the
external potentials U±�r� for the ions such that U±�r�
= ±V�r�+W�r�, where we defined the electrostatic potential
�due to the colloids� V�r�=�iv��r−Ri � � and the hard-core
potential W�r�=�iw��r−Ri � �, with


v�r� = �
v0 r � a;

− Z	B/r r � a ,
�19a�

and


w�r� = �
w0 r � a;

0 r � a .
�19b�

Although we are actually interested in the hard-core limit

v0→� and 
w0→� here, we introduce the �finite� hard-
core parameters v0 and w0 here for later convenience. They
are necessary and sufficient to ensure, within the linearized
theory, a vanishing ion density in the colloidal hard cores.

Collecting the results, we can write the approximate grand
potential functional as

���+,�−� = �id� ��+� + �id� ��−� +
e2

2�

 drdr�

��r���r��
�r − r��

+
 dr	��r�V�r� + ��+�r� + �−�r��W�r�
 ,

�20�

which is minimized by those �equilibrium� profiles that sat-
isfy the Euler-Lagrange equations

ln
�̄±

cs
+

�±�r� − �̄±

�̄±

± ��r� + 
W�r� = 0. �21�

Here we introduced the �dimensionless� electrostatic poten-
tial ��r�, given by

��r� = 	B
 dr�
��r��

�r − r��
+ 
V�r� . �22�

B. Equilibrium profiles and Donnan equilibrium

We leave the hard-core parameters v0 and w0 undeter-
mined for now and start the analysis of the Euler-Lagrange
equations by integrating Eq. �21� over the volume. At the
same time, we impose that �dr��±�r�− �̄±�=0, i.e., we choose
�̄± such that it is the actual average ion density in the sus-
pension. After rearrangement, we find that

�̄± = csexp�
�̄ − �
w0� , �23�

where �̄=�dr��r� /V is the spatially averaged electric poten-
tial, i.e., the Donnan potential. Since global charge neutrality
imposes that �̄+− �̄−=Zn, we can conclude from Eq. �23� that
the Donnan potential satisfies

sinh�̄ = −
Zn

2cs
exp��
w0� , �24�

which reduces to the usual Donnan expressions in the point-
colloid limit �→0 �48,71�. Combining Eq. �24� with �23�
yields

�̄± = 1
2 ���Zn�2 + �2cs�2exp�− 2�
w0� ± Zn� , �25�

which explicitly relates the salt concentration in the suspen-
sion to the colloid density and the salt reservoir concentra-
tion, provided the parameter w0 is known.

Using these relations for �̄ and �̄±, we consider a specific
linear combination of the Euler-Lagrange equations and re-
write Eqs. �21� as

�+�r�
�̄+

+
�−�r�

�̄−

− 2 = − 2�
W�r� − �
w0�; �26a�

��r� − �̄ = − ��̄+ + �̄−����r� − �̄� − �̄�
W�r� − �
w0� ,

�26b�

where we defined the shorthand notation �̄= �̄+− �̄−=Zn for
the overall ionic charge density. This particular linear com-
bination was chosen because �i� the charge density is the
physical quantity of interest here and �ii� the electric poten-
tial is decoupled from the “charge-neutral” density.

It is straightforward to solve the “hard-core” linear com-
bination, Eq. �26a�. Imposing that �+�r� / �̄++�−�r� / �̄−�0
within the hardcore of any of the colloids �i.e., wherever
W�r�=w0� yields a value for the hard-core parameter,


w0 =
1

1 − �
, �27�

whereas outside any of the colloidal hard core positions we
have
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�+�r�
�̄+

+
�−�r�

�̄−

=
2

1 − �
. �28�

The solution of the “charge” linear combination, Eq.
�26b�, is most straightforwardly found by Fourier transfor-
mation. For an arbitrary function f�r�, we define and denote
the Fourier transform as fk=�drf�r�exp�ik ·r�. One easily
checks from Eq. �26b� that

�k = �2��3	�̄ + ��̄+ + �̄−��̄ + �̄�
w0
��k�

− ��̄+ + �̄−��k − �̄Wk, �29�

where we have from Eq. �19b� that

Wk =
4�aw0

k2 � sin�ka�
ka

− cos�ka���
j=1

N

eik·Rj , �30�

and from Eqs. �22� and �19a� that

�k = 4�	B
�k

k2 −
4�a

k2 �
j=1

N

exp�ik · R j�

���
v0 + Z
	B

a
�cos ka − 
v0

sin ka

ka
� . �31�

Equations �29� and �31� are two linear equations in the un-
knowns �k and �k, which can be solved straightforwardly.
Fixing the remaining hard-core parameter v0 to


v0 = − Z
�̄	B

1 + �̄a
+ 
w0

�̄+ − �̄−

�̄+ + �̄−

, �32�

we find that the charge density is given by

�k = �2��3� �̄

1 − �
+ ��̄+ + �̄−��̄� k2

k2 + �̄2��k�

+
Z

1 + �̄a

cos ka +
�̄

k
sin ka

1 + k2/�̄2 �
j

eik·Rj , �33�

where the effective Debye screening parameter is defined as

�̄ � �4�	B��̄+ + �̄−�

= �4�	B
�4 �Zn�2 + �2cs exp�− �/�1 − ����2. �34�

Here we used Eqs. �24�, �25�, and �27� in rewriting the first
into the second line. Note that the factor exp�−� / �1−��� that
appears in Eq. �34� can be accurately represented by �1−��,
with a relative deviation less than 0.01 for ��0.1 and less
than 0.1 for ��0.35.

The first term in expression �33� is of the form � k2��k�
and does not contribute to the charge density �35�. However,
we will see below that this term does, in fact, contribute to
the grand potential, as this involves the Coulomb energy
��dk�k /k2.

The real space representation of the charge density is a
multicentered sum ��r�=�i�1��r−Ri � �, where the one-
particle density profiles �the “orbitals”� have the usual DLVO
form �9,10�

�1�r� = �0 r � a;

Z�̄2

4�

exp��̄a�
1 + �̄a

exp�− �̄r�
r

r � a .
�35�

We note that the vanishing of �1�r� inside the colloidal hard
core is a direct consequence of our particular choice for v0
given by Eq. �32�; other choices for v0 would have yielded a
finite ion charge density inside the hard core. Note also that
the multicentered charge density ��r� is not vanishing within
the hard cores, since the exponential tail of the orbital cen-
tered around colloid i penetrates the hard core of all the other
colloids j� i.

By inserting Eq. �27� into �25�, explicit expressions for
the average concentrations �̄± of ions in the suspension are
obtained as a function of the colloid density n, colloid charge
Z, and the reservoir concentration 2cs—this was already used
to obtain Eq. �34�. These expressions reduce, in the limit of
pointlike colloids �for which �=0� to the standard expres-
sions for the Donnan effect �48,49�.

This effect is illustrated in Fig. 1, where we plot the total
ion concentration �̄++ �̄− in Fig. 1�a�, and the concentration
of added salt 2�̄−= �̄++ �̄−−Zn in Fig. 1�b�, on the basis of
our expressions for �̄±. The parameters are close to those of
the experiments by Raşa et al. �72� and Raşa and Philipse

FIG. 1. Total ion concentration �̄++ �̄− �a� and concentration of
added salt �̄− �b� as a function of the colloid packing fraction for
different reservoir concentrations, using the expressions of Eqs.
�25� and �27�. The colloidal charge and radius are Z=50 and a
=21.9 nm, respectively, and the solvent is ethanol at room tempera-
ture such that 	B=2.37 nm. This matches the parameters from the
experiments by Raşa et al. �72�.

B. ZOETEKOUW AND R. VAN ROIJ PHYSICAL REVIEW E 73, 021403 �2006�

021403-6



�73�: Z=50, 	B=2.37 nm, and a=21.9 nm. The reservoir salt
concentration equals the �=0 limit of each of the curves, and
the crossover from the low-� plateau to the high-� linear
part corresponds to the crossover from added-salt dominance
to counterion dominance. Note the expulsion of added salt
back into the reservoir at high � in Fig. 1�b�. An important
aspect of these intermediate results is that the screening pa-
rameter �̄ increases with n essentially ��Zn in the
counterion-dominated regime �which may occur at packing
fractions as low as ��10−4 if cs�3 �M�.

As we have now solved the Euler-Lagrange equations
�21� for the two linear combinations �+�r� / �̄++�−�r� / �̄− and
�+�r�−�−�r�, it is straightforward to disentangle the equilib-
rium profiles and obtain the profiles �±�r� of the two ionic
species separately.

It is important to realize, however, that these results de-
pend on the particular choice that we have made for the
hard-core potentials in Eqs. �19a� and �19b�. Different
choices for these hard-core potentials lead to other, non-
equivalent minima of the grand potential. For instance, in-
stead of U±�r�= ±V�r�+W�r�, we could have considered the
choice U±�r�= ±V�r�+2�̄
W�r� / ��̄++ �̄−�, which, with 
v0

=−Z�̄	B/ �1+ �̄a� and 
w0=1/ �1−�� would lead to a van-
ishing �1�r� and �+�r� / �̄++�−�r� / �̄− inside the hard cores.
This choice was actually made in Refs. �46,47� and leads to
similar, but not identical results �see Appendix B�.

C. Minimum of the functional

In Appendix A, we derive the equilibrium grand potential
� by insertion of our solution of the Euler-Lagrange equa-
tions into the functional. The effective interaction Hamil-
tonian H=Hcc+� then takes the form

H�	R
,N,V,cs� = ��V,n,cs� + �
i�j

N

V�Rij;n,cs� . �36�

The first term �, is independent of the colloidal coordinates
Ri, and is called the “volume term” as it is a density-
dependent, extensive thermodynamic quantity that scales
with the volume of the system. The second term of Eq. �36�
is a pairwise sum that does depend on the colloidal coordi-
nates �and on the density n�. For later convenience we de-
compose the volume term as �=�D+�0, with the so-called
Donnan term defined by


�D

V
= �

±
�̄±�ln

�̄±

cs
− 1� , �37�

and the other term by


�0

V
= −

1

2

�Zn�2

�̄+ + �̄−

+
�

1 − �

2�̄+�̄−

�̄+ + �̄−

−
n

2

Z2�̄	B

1 + �̄a
. �38�

In Sec. IV B below, we will see that �D, which takes the
form of ideal-gas contributions, accounts for the Donnan
equation of state �except for the colloidal ideal-gas contribu-
tion�, hence, the nomenclature. The term �0 appears as an
electrostatic �and hard-core� free-energy contribution. This
separation is slightly misleading, however, since the two

terms both depend on n and Z through the expressions �25�
and �34�, which stem from the Donnan potential �24� and,
hence, from the balance between electrostatics and entropy.

The effective pair potential between the colloids, V�Rij�,
which appears in the second term of Eq. �36�, is given by


V�r� = �� r � 2a;

�1 + A�Z�
2 	B

exp�− �̄r�
r

r � 2a ,
�39�

with the DLVO charge given by Z�=Z exp��̄a� / �1+ �̄a�, and
with the parameter A defined by

A = 4�
w0
n

�̄3 ��1 + �̄a�2e−2�̄a + ��̄a�2 − 1� . �40�

The effective pair interaction V�r� is very similar to the tra-
ditional DLVO potential V2�r� of Eq. �1�, but with two im-
portant differences. The first difference involves the screen-
ing parameter �̄ in V�r�, which is to be contrasted with the
reservoir screening parameter � in V2�r�. The second differ-
ence is that the amplitude of V�r� is enhanced compared to
V2�r� by a factor �1+A�. This can be traced back to our
particular choice of linear combinations of density profiles
that we used to solve the Euler-Lagrange equations.

In Fig. 2, we plot A as a function of the screening param-
eter �̄a for several values of the packing fraction �. The plot
shows that A�1 for essentially all packing fractions of in-
terest here. Moreover, one can also show that A�0 if the
hard potentials are defined as U�r�=V�r�+2�̄
W�r� / ��̄+

+ �̄−� instead of the definition used here. This latter choice
does not affect any of the other volume terms, but does in-
volve another choice for v0 and w0, and does change the
expression of �̄ �see Appendix B�. For these two reasons we
set A�0 in the remainder of the paper.

The so-called volume terms �D and �0 are very similar to
their canonical counterparts that were derived in Ref. �47�.
The main difference is that the present volume term includes
the term −�dr��+�+�r�+�−�−�r�� due to the grand-canonical
character of our calculations. This leads to another differ-
ence, since one should now view the Hamiltonian H as a
function of n and the reservoir salt concentration cs, i.e., one

FIG. 2. The factor A of Eq. �40� as a function of �̄a and �. For
all parameters, A�1, so it can safely be neglected in Eq. �39�.
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should take the dependence of � on �̄± and �̄ as a depen-
dence on cs and n through Eqs. �34� and �25�. It is the non-
trivial �and nonlinear� dependence of 
�D/V and 
�0 /V on
the colloid density n, at fixed cs, which is responsible for
interesting thermodynamic effects, as we will see later.

IV. THERMODYNAMICS

A. Free energy

As we have now found the functional form �36� for the
effective Hamiltonian of the colloids, we are ready to calcu-
late the corresponding free energy F�N ,V ,T ,cs� defined just
below Eq. �13�. From this, the other thermodynamic quanti-
ties follow. Since the volume terms in �36� are independent
of the coordinates of the colloids, we can factor out their
Boltzmann weights and write

exp�− 
F� = exp�− 
��trc exp�− 
�
i�j

N

V�Rij�� . �41�

This can be rewritten as

F = �D + �0 + Fid + Fexc, �42�

with �D and �0 defined in Eq. �38�, with the colloidal ideal-
gas free energy

Fid = NkBT �ln�nV� − 1� , �43�

and where Fexc is the nonideal �excess� free energy due to the
colloid-colloid pair interactions �39�. Here we calculate Fexc
variationally, using the Gibbs-Bogoliubov inequality
�74–77�. This inequality states that the excess free energy
Fexc

�ref� of a so-called reference system of volume V that con-
tains N particles with any pair interaction V�ref��Rij�, satisfies

Fexc � Fexc
�ref� + ��

i�j

�V�Rij� − V�ref��Rij���
ref

, �44�

where �¯�ref denotes a thermodynamic average that is to be
evaluated in the reference system. The key idea is to use a
reference pair potential with a free parameter with respect to
which the right-hand side of Eq. �44� can be minimized; the
minimum is then the optimal estimate for the free energy
Fexc of interest. We use two different reference system to
calculate the free energy of fluid and crystal phases, respec-
tively.

For the fluid phase we use a hard-sphere reference system,
with the hard-sphere diameter d as variational parameter. In-
troducing the effective hard-sphere packing fraction �
= �� /6�nd3, we can write

Fexc

NkBT
= min

d
� 4� − 3�2

�1 − ��2 +
n

2
4�


d

�

dr r2gd�r;��
V�r�� ,

�45�

where the first term is Carnahan-Starling expression for the
hard-sphere free energy �74,78�, and where gd�r ;�� is the
radial distribution function of a fluid of hard spheres with
diameter d and packing fraction �. We approximate gd�r ;��
by the Verlet-Weis corrected Percus-Yevick expressions

�74,79�. This allows for an analytic evaluation of the integral
in Eq. �45�, since the Yukawa form of V�r� turns this integral
into a Laplace transform of rgd�r ;��, for which accurate ex-
pressions have been derived on the basis of Padé fits in Refs.
�80,81�. The minimization with respect to d is then numeri-
cally performed straightforwardly. Note that such a minimum
indeed exists, as the excess free energy of the hard-sphere
reference system becomes infinitely large in the limit of large
particle sizes. Because the particles in our actual system have
also a hard core of radius a, we impose that d�2a.

As a reference system for the solid phase, we use N clas-
sical Einstein oscillators �82,83� on an fcc lattice �84�. The
Einstein frequency �E plays the role of the variational pa-
rameter used to minimize the right-hand side of Eq. �44�. For
the thermodynamic average of the Yukawa interactions in
this system, we use the expressions found by Shih et al. �84�.

Thus far, we have only considered fcc configurations for
the solid phase, but there is no principal problem to general-
ize this to other structures, such as bcc �47�. Consequently,
we only consider gas-liquid, fluid-fcc and fcc-fcc phase equi-
libriums in this paper.

B. Osmotic pressure

The osmotic pressure �= P−2cskT of the suspension un-
der consideration follows from P=−�F /�V at fixed N and cs.
We can therefore use our expression for F given in Eq. �42�
to obtain ��n ,cs� explicitly as

� = �D + �0 + �id + �exc �46�

with �D=−2cskBT− ���D/�V�, the Van ’t Hoff �ideal-gas�
contribution �id=−��Fid /�V�=nkBT, the excess pressure
�exc=−��Fexc/�V�, and the remaining term �0=−���0 /�V�.
Explicit general expressions for �D, �0, and �exc can, of
course, be given on the basis of Eqs. �38� and �37�, and, e.g.,
�45�, respectively, but it turns out to be instructive to focus
on these expressions in the limit of point colloids with radius
a=0 �such that �=0�: this reduces the algebra and allows for
an interesting illustration of cancellations of some of the
electrostatic contributions to the osmotic pressure �. We
stress, however, that we used the full expressions in our nu-
merical calculations presented below.

In the point-colloid limit, we have


�D = − 2cs + �̄+ + �̄− = − 2cs + ��Zn�2 + �2cs�2

= � �Zn�2

4cs
+ O�n4� Zn � 2cs

Zn − 2cs + O�cs
2� Zn � 2cs,

�47�

and a little tedious but straightforward algebra yields


�0 = �−
�Zn�2

4cs
+ O�n3� Zn � 2cs

− bn3/2 + O�cs
2� Zn � 2cs,

�48�

with a coefficient b=�Z�	BZ2	B /2. We focus first on the
low-density/high-salt regime Zn�2cs and then on the oppo-
site regime.
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The expressions �47� and �48� show a cancellation of the
dominant term in the regime Zn�2cs, such that in this re-
gime ���id+�exc, i.e., the pressure is actually the pressure
of the effective one-component system described by the pair-
wise screened-Coulomb Hamiltonian. Interestingly, however,
one can also write the virial expansion 
Fexc/V=B2��̄�n2

+O�n3� in this regime, where the second virial coefficient
�74� is

B2��̄� =
1

2

 dr�1 − exp�− 
V�r��� , �49�

with the colloidal pair potential V�r� defined in Eq. �39�. In
the limit of weak interactions, the exponent in Eq. �49� can
be linearized with the result that B2=Z2 /4cs for point col-
loids. This means that 
�exc��Zn�2 /4cs�
�D and, hence,
that the pressure can also be approximated by the Donnan
expression ���id+�D. In other words, on the basis of this
simple analysis one expects “reliable” results for the pressure
�and, hence, for the thermodynamics� in the regime Zn
�2cs by taking either the full four-term expression �46� for
�, or the two-term expressions �id+�D and �id+�exc, but
not any other combination. This will be confirmed by our
numerical results below.

The situation is bit more complicated in the opposite low-
salt regime 2cs�Zn, since then �i� no cancellations take
place and �ii� the virial expansion for Fexc breaks down be-
cause of the long-range character of the unscreened-
Coulomb interactions.

As a simple approximation for highly charged particles
�specifically, particles for which Z2	B/a�1�, the pair corre-
lation function gd�r� can be set to gd�r�=1 for r� 1 � 2n−1/3

and to 0 otherwise. One can then show that the lowest-order
contribution to the excess pressure takes the form 
�exc
=−b�n4/3 with b�=�Z2	B/12. As a consequence, we find the
asymptotic low-salt result


� = �1 + Z�n − b�n4/3 − bn3/2, �50�

which contains Donnan, colloidal-pair, and Debye-Hückel-
like contributions. The prefactors of the fractional powers
would change if a proper Güntelberg charging process would
have been performed �85�, but the present analysis is good
enough to capture the spinodal instability that is now well
known to be realistic for primitive model systems at suffi-
ciently strong coupling �low enough temperature� �86–92�.
On this basis one could expect that the present theory pre-
dicts phase separation in low-salt colloidal suspensions.
Within the full theory for F we, indeed, find this phenom-
enon in Sec. V.

We now illustrate our results for the osmotic pressure by
numerically comparing the theoretically predicted values to
experimental measurements in Fig. 3. The experimental sys-
tem is an ethanol suspension of colloidal silica spheres, for
which ��n� was determined by integration of the measured
density profile in sedimentation equilibrium �72,73�. The
system parameters are Z=32, 2cs=16 �M, 	B=2.38 nm, and
a=21.9 nm. Since Z	B/a�3, we do not expect too much
charge renormalization, and as Zn /2cs�0.7 at the highest
density considered here ��=0.01�, this experiment is ex-

pected to be in the high-salt regime where not only the full
expression �46� for � but also both the one-component ex-
pressions ���id+�exc and the Donnan expression �
��id+�D are expected to “work” with reasonable accuracy.

This is to some extent confirmed by Fig. 3, where the
measured osmotic pressure is in quantitative agreement with
two of the three theoretical versions at low packing fractions
��0.003 or so; the Donnan pressure is less accurate. At
higher densities the different theoretical curves deviate from
each other �and from the experiment�, with the one-
component result �id+�exc being closest to the actual ex-
periment. A word of caution is appropriate here, however,
since recent work by Biesheuvel indicates that charge regu-
larization is relevant in the present system, i.e., the bare col-
loidal charge Z is not a constant but decreases with density,
where significant deviations of the low-density charge is pre-
dicted for ��0.002 �93�. This is rather precisely the regime
where the theories begin to deviate from the experiment.
This issue will also be addressed in more detail in future
work.

From the fact that the one-component osmotic pressure
�=�id+�exc describes the experimental data rather accu-
rately, one may conclude that the experimentally found “in-
flated” profiles of Ref. �73� need not necessarily be described
by theories, such as those of Ref. �94�, where a three-
component mixture �cations, anions, and colloids� in gravity
gives rise to an ion-entropy-induced self-consistent electric
field that lifts the colloids to higher altitudes than expected
on the basis of their mass. The equation of state suggests that
an alternative description could be given, based on hydro-
static equilibrium of an effective one-component system of
colloidal spheres with pairwise screened-Coulomb repulsions
only. The latter picture is not in contradiction with the exis-
tence of the electric field, since the density variation with
height implies a variation of the Donnan potential with

FIG. 3. Equation of state compared to the experiments of Raşa
et al. �72�, described by the parameters Z=32 for the colloidal
charge, a /	B=96.7 for the radius-to-Bjerrum length ratio, and 2cs

=16 �M for the reservoir salt concentration. Shown are the experi-
mental data �crosses�, a one-component DLVO system �dotted line�,
the Donnan theory �dashed line�, and our full linear theory �solid
line�. Two of the three theoretical curves describe the experimental
curves accurately for ��0.003, the Donnan theory is less accurate
although still qualitatively reasonable in this regime.
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height through Eq. �24�. The two pictures are, in this sense,
merely two sides of the same coin, at least on length scales
beyond which the local density approximation applies that
underlies the one-component theory. On smaller length
scales the source of this electric field involves deviations
from local charge neutrality, which cannot be explained by
hydrostatic equilibrium and a bulk equation of state alone.

The other system for which we calculate the osmotic pres-
sure is one of the systems that Linse studied by Monte Carlo
simulations in Ref. �95�. This system is free of added salt,
contains colloids with a charge Z=40 and a radius-to-
Bjerrum length parameter of a /	B=22.5 for monovalent ions
�in the notation of Ref. �95� the coupling parameter is �II
=0.0445�. The simulated results are shown in Fig. 4, together
with several versions of the present theory. It is clear that the
major contribution to the osmotic compressibility factor
originates from the pressure �id+�D��Z+1�n, which ex-
ceeds the one-component combination �id+�exc by at least
an order of magnitude. The decrease of 
� /n for ��0.02 is
due to the contribution �0. Our calculated pressure describes
the simulation data quite well, showing that volume terms
may have a pronounced effect on the thermodynamic prop-
erties of low-salt suspensions, while the pairwise DLVO pic-
ture without volume terms breaks down qualitatively. We
note, finally, that the limiting expression �50� for the pressure
in the limit for point colloids can be seen to catch the low-
density negative curvature of 
� /n with n as predicted by
the full theory and the simulations, but not the increased
stability at higher n.

V. PHASE DIAGRAMS

From the free energy per unit volume f�n�=F /V at fixed
cs, we calculate the chemical potential and the pressure, and
we impose the usual condition of thermodynamic equilib-
rium �11� to find a phase equilibrium. We already mentioned
that this is numerically much less involved than in the ca-

nonical calculations of, e.g., Ref. �47�, where the set �8� is to
be solved. We merely illustrate the feasibility of these calcu-
lations here by showing two phase diagrams, for a particular
Z, a, and 	B. In forthcoming publications we will fully ex-
ploit the relative simplicity of the grand-canonical formula-
tion of the theory by “scanning” the full parameter space
�Z ,	B/a�, including a generalization of the present theory to
include charge renormalization �96�.

The first set of parameters that we consider is Z=7300,
a=326 nm, and 	B=0.72 nm, which corresponds to the ex-
periments of Ref. �25�. The phase diagram that follows from
the present theory is displayed in Fig. 5, and shows phase
coexistence with a considerable or large density gap at cs
�20 �M, and only a very small density gap at higher cs. At
a salt concentrations of about 23.8 �M, a liquid-solid-solid
triple point occurs �denoted by � in Fig. 5�, and at 26.2 �M
a solid-solid critical point is located �denoted by � in the
figure�. Although somewhat difficult to see in this picture,
there is no lower critical point.

The phase diagram of Fig. 5 is pretty similar to the one
calculated in Ref. �47� using the canonical version of the
theory �47�, but with a few substantial differences. The ca-
nonical theory, for instance, does not find any solid-solid
coexistence, nor does it find a triple point for these param-
eters. Also the canonical theory predicts a lower critical
point, while the current grand-canonical version of the theory
does not. Despite this differences the main phenomenon is
shared that, at low salinity cs�20 �M, a density gap opens
up.

The physical mechanism for this demixing transitions into
a dilute and dense phase is identical to what was explained in
Refs. �47,97,98�: the self energy of the double layers as rep-
resented by the third term of the volume term �0 in Eq. �38�
drives a spinodal instability at low enough cs, even though
the pair interactions are purely repulsive. The underlying
physical mechanism is that the cohesive energy that stabi-
lizes the dense phase stems from the compression of the

FIG. 4. Equation of state �compressibility factor� compared to
the computer simulation of Ref. �95�, where Z=40 and a /	B

=22.5. Shown are the simulation data from �95� �crosses�, the pres-
sure � from our full linear theory �solid line�, the approximate
low-salt expression �50� �dotted line�, and the pairwise one-
component result �id+�exc �dashed line�. The theoretical curves
are based on the reservoir salt concentration cs=10−15 M, which is
low enough to ensure an essentially vanishing coion concentration
in all state points shown here.

FIG. 5. Phase diagram for a colloidal suspension as a function
of colloidal packing fraction � and reservoir salt concentration cs.
The colloidal radius and charge are a=326 nm and Z=7300, and
the solvent is water at room temperature such that the Bjerrum
length is 	B=0.72 nm. The solid lines denote fluid-solid and solid-
solid binodals, and the dotted line shows the underlying metastable
gas-liquid binodal. The fluid-solid-solid triple point is denoted by
�, and the solid-solid critical point by �.
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double layer’s thickness �̄−1 upon increasing the colloid den-
sity: this effect brings the charge in the diffuse double layer
closer to the oppositely charged colloidal surface. This
mechanism is very similar to the one that causes gas-liquid
demixing in the restrictive primitive model according to
Debye-Hückel theory �87,99�.

A word of caution is appropriate here: given that Z	B/a
�16, one expects a substantial renormalization of the charge
within nonlinear Poisson-Boltzmann theory for this system
and, hence, a reduction of the tendency to demix. Whether or
not this mechanism for phase separation remains strong
enough to yield a big density gap in the phase diagram if
charge renormalization is taken into account, will be inves-
tigated in a future publication �59�.

The second phase diagram that we present here is for the
parameters of the experiments of Monovoukas and Gast
�100�, where Z=1200, a=66.7 nm, and 	B=0.72 nm. These
parameters were chosen because the experiments reveal a
significant density gap, by a factor of three, between the
coexisting fluid and solid phases at salinity of the order of
10 �M. Such a large density gap cannot be explained by the
DLVO pair potential alone, and hence, we investigate here to
what extent the volume terms may account for this effect.

The phase diagram, shown in the �–�̄− representation in
Fig. 6, shows the experimental points and three fluid-solid
binodals based on the present theory. As the results of Ref.
�100� seem to be independent of the concentration of added
salt for salt concentration lower than �8 �M, we assumed
an extra background salt concentration of 8 �M for the ex-
perimental points. Note that this representation of the phase
diagram, with the vertical axis representing the concentration
of added salt instead of the reservoir concentration, is such
that the tie lines �which have been omitted for clarity� are no
longer horizontal as in the �–cs representation, but instead
tilted to lower �̄− at higher � due to the Donnan effect �see
also Fig. 1�.

The first binodal in Fig. 6 is the one based on the ideal
and excess part of F only, i.e., we assume that �0 and �D
vanish �or more accurately: the volume terms are assumed to
be merely linear in N and V and do therefore not affect the
phase diagram�. Although this binodal gives a fair represen-
tation of the experimental points �probably this is how Z
=1200 was chosen�, they do not capture the large density
gap. The second binodal is based on the full expression for
F, including the volume terms, with Z=1200. We find an
enormous density gap that is much larger than experimen-
tally observed, and that extends to unreasonably high salt
concentrations. The third binodal is also based on our expres-
sion for F with volume terms, but now for a smaller charge
Z=720. Interestingly, this choice gives a density-gap at fluid-
solid coexistence in the right salt concentration regime, but
the magnitude of the gap is yet much bigger than experimen-
tally observed. The reduction of the charge from Z=1200 to
Z=720 may give a rough idea of the effect of charge renor-
malization and shows that this nonlinear effect reduces the
tendency to demix considerably. Theories for charge renor-
malization �50,53� show that the renormalized charge is ac-
tually not a constant but depends on the screening parameter
and the density; the present value Z=720 corresponds to the
dilute limit value at �a�0.8, i.e., at cs�10 �M, and is fixed
here for simplicity. We expect this to be a reasonable lower
limit for the renormalized charge in the region in which the
phase separation occurs. Also this system will be investi-
gated within a nonlinear version of Poisson-Boltzmann
theory in a future publication �59�.

VI. CONCLUSION

We have reformulated and rederived the volume term
theory for suspensions of charged colloids �46,47�. Our
present derivation should be more transparent than the origi-
nal one, for instance because we can now avoid the extra
parameter 	 that regulates the Coulomb potential from 1/r to
exp�−	r� /r with 	→0 only at the end of the calculation.
Moreover, the presently derived expressions should be easier
to use in numerical calculations of thermodynamic properties
and phase diagrams because the ions are treated grandca-
nonically instead of canonically, thereby assuring equal
chemical potential of the ions from the outset. Moreover, a
direct connection with Donnan theory is now made, with
explicit expressions for the Donnan potential and the ion
concentration in the system. In future publications we will
fully exploit the computational advantages and extend the
theory to include charge renormalization.

We derived analytic expressions for the osmotic pressure
in the point-colloid limit for both the low-salinity and high-
salinity limits. The low-salinity limit of the pressure was
shown to correspond to the Donnan expression, while in the
limit of high salt concentrations the traditional DLVO results
are recovered. The present full theory interpolates between
these results and gives a good account of measured and
simulated osmotic pressures in both regimes.

We also calculated two phase diagrams. The first one
matches the parameters of Ref. �47� and shows a similarly
large phase instability at low salinity, although there are also

FIG. 6. Phase diagrams for the parameters of the experiment by
Monovoukas and Gast �100�. The Bjerrum length for this system is
	B=0.72 nm, and the partical radius is a=66.7 nm. The data points
plotted here correspond to the samples for which a fluid-solid co-
existence was observed in Ref. �100�. The solid line is a phase
diagram for a one-component DLVO system, the dashed line de-
notes the phase boundaries for our full linear theory for a charge of
Z=1200. The dotted line gives the phase boundary for the same full
linear theory, but with a lower charge Z=720.
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a few substantial differences. The second phase diagram
matches the parameters of the experiments by Monovoukas
and Gast �100�, where an anomalously large density gap at
fluid-solid coexistence was reported. Interestingly, the
present theory does predicts a density gap at fluid-solid co-
existence, but its magnitude is much larger than experimen-
tally observed. We stress, however, that these phase diagrams
are calculated in a regime where charge renormalization can-
not be ignored. The relative transparency of the present deri-
vation allows to systematically include this nonlinear effect
into the theory, as will be shown in a future publication �59�.

The linear theory described in this paper already shows,
however, that volume terms can affect the osmotic pressure
of low-salt suspensions qualitatively, also in regimes where
charge renormalization and other nonlinear effects are not
expected to be important.
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APPENDIX A: THE GRAND POTENTIAL

In this appendix, we derive the equilibrium grand poten-
tial �. We show that upon insertion of this grand potential
into Eq. �13�, the effective Hamiltonian can be cast into the
form specified by Eqs. �36�–�39�.

In the framework of density functional theory, the equi-
librium grand potential is given by the minimum of the func-
tional ���+ ,�−� of Eq. �20�. This minimum is found by in-
serting the Euler-Lagrange equation �21� into the functional.
This leads to the following expression for the grand poten-
tial:


�

V
= �

±
�̄±�ln� �̄±

cs
� − 1� +

Zn

2
�̄ + �
w0

�̄+ + �̄−

2
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1

2V

 dr��r�
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1

2V

 dr
W�r���+�r� + �̄−�r�� .

�A1�

The “electrostatic” integral can be evaluated as

1
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 dr��r�
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+
1

V
�
i�j
��1 +

A

2
�� Ze�̄a

1 + �̄a
�2	Be−�̄Rij

Rij
�

−
1

V
�
i�j
�− Z2 	B

Rij
� , �A2�

where we inserted the Fourier transform �k of ��r� from
�33�, and the Fourier transform Vk of V�r�, which is given by


Vk = −
4�

k3 ��
v0 + Z
	B

a
�ka cos ka − 
v0 sin ka��

j

eik·Rj .

�A3�

The factor A /2 in the fourth term on the right-hand side of
Eq. �A2� is caused by the expulsion of microionic charges
from the colloid cores, and is given by Eq. �40�. Note that the
first and second terms of Eq. �A2� result from the � k2��k�
term in Eq. �33�, which are did not contribute to the charge
density.

In a similar way, the hard-core part of the grand potential
�A1� is evaluated as

1

2V

 dr
W�r���+�r� + �−�r��

=
1

2V

1

�2��3

�̄+ − �̄−

�̄+ + �̄−

 dk
Wk�−k

=
1

V

A

2
� Ze�̄a

1 + �̄a
�2

�
i�j

	Be−�̄Rij

Rij
, �A4�

where the Fourier transform of W�r� is given by Eq. �30� and
where we used that W�r���+�r� / �̄++�−�r� / �̄−��0.

Substitution of Eqs. �A2� and �A4� into the grand poten-
tial �A1� leads to


� = �1 + A�� Ze�̄a

1 + �̄a
�2

�
i�j

	B
e−�̄Rij

Rij

− Z2�
i�j

	B

Rij
+ 
� , �A5�

where the “volume term” �=�D+�0 is given by Eqs. �37�
and �38�.

Gathering Eqs. �13�, �6�, and �A5�, we find that the effec-
tive Hamiltonian can be cast into the form given by Eqs.
�36�–�39�.

APPENDIX B: ALTERNATIVE HARD-CORE TERMS

We have already mentioned that, in this paper, we use a
slightly different definition of the hard-core parameters 
v0
and 
w0 than were used by van Roij and Hansen in �46� and
van Roij et al. �47�. In this appendix, we make this statement
explicit and calculate, within the grand-canonical scheme of
this work, the effective Hamiltonian using the definition of
the hard-core potentials of Refs. �46,47�.

In contrast to the presently used definition U±�r�= ±V�r�
+W�r� for the microion-colloid interactions, as outlined just
above Eq. �19a�, van Roij and Hansen used the definition

U±�r� = ± V�r� +
2�̄


�̄+ + �̄−

W�r� , �B1�

where the potentials V�r� and W�r� are defined in Eqs. �19a�
and �19b�. With this definition, the grand potential becomes
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���+,�−� = �id� ��+� + �id� ��−� +
 dr��r�V�r�

+ kBT	B
 dr dr�
��r���r��
�r − r��

+
2�̄+�̄−

�̄+ + �̄−

 dr��+�r�

�̄+

+
�−�r�

�̄−
�W�r� ,

�B2�

where the ideal-gas functionals 
�id��±� are defined in Eq.
�18�.

The corresponding Euler-Lagrange equations are then
given by

ln
�̄±

cs
+

�±�r� − �̄±

�̄±

± ��r� +
2�̄

W�r�

�̄+ + �̄−

= 0. �B3�

By integrating these equations over the system volume, and
using the condition for global charge neutrality, we find that
the average densities �̄± are identical to those given in Eq.
�25�. The Donnan potential �̄, however, is not given by Eq.
�24� anymore, but by

�̄ = − sinh−1� Zn

2cs
e�
w0� + �
w0

Zn

�̄+ + �̄−

�B4�

instead. Although this expression also reduces to the usual
Donnan expression in the limit n→0, it is physically less
satisfactory than the result we found in Eq. �24�, as at high �
its sign can become different from that of the colloidal
charge −Ze.

To calculate the density profiles, we take the following
linear combination of the Euler-Lagrange equations �B3�:

�+�r�
�̄+

+
�−�r�

�̄−

= 2�1 − 
W�r� + �
w0�; �B5a�

��r� − �̄

�̄+ + �̄−

= − ���r� − �̄� . �B5b�

Note that, due to the different definition of U±�r�, the hard-
core potential W�r� is now totally decoupled from the charge
density ��r�.

Equation �B5a� is identical to Eq. �26a�; thus, its solution
is again 0 inside the hard cores of the colloids and given by
Eq. �28� outside the hard cores, provided that we fix 
w0
=1/ �1−��.

The second equation �B5b� is not identical to its counter-
part, Eq. �26b�. The solution is quite similar though: we need
to fix the hard-core parameter 
v0 to


v0 = − Z
�̄	B

1 + �̄a
, �B6�

in order to make sure that the charge density ��r� is a mul-
ticentered sum of DLVO profiles. The solution �in k-space�
is then given by

�k = �2��3	�̄ + ��̄+ + �̄−��̄

k2

k2 + �̄2��k�

+
Z

1 + �̄a

cos ka +
�̄

k
sin ka

1 + k2/�̄2 �
j

eik·Rj , �B7�

which, in real space, is indeed a multicentered sum ��r�
=�i�1��r−Ri � � with the individual profiles given by Eq. �35�.
Note that Eqs. �33� and �B7� only differ in the � k2��k� term.
As a consequence, the profiles ��r� resulting from those two
equations, are identical, but the minimum of the functional
differs.

Upon insertion of the equilibrium density profiles into the
functional �B2�, we immediately note that the last term on
the right-hand side vanishes. The grand potential then be-
comes


�

V
= �

±
�̄±�ln� �̄±
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� − 1� +
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2
�̄ +

�

1 − �

2�̄+�̄−

�̄+ + �̄−

+
1

2V

 dr��r�
V�r� . �B8�

The integral in this expression can now be calculated using
Parseval’s theorem and the expression �A3� for the Fourier
transform of V�r�. The result is

1
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 dr��r�
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1
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�� Ze�̄a
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−
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2
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�B9�

so that the grand potential eventually becomes


� = � Ze�̄a

1 + �̄a
�2

�
i�j

	B
e−�̄Rij

Rij
− Z2�

i�j

	B

Rij
+ 
� . �B10�

The volume term 
� is exactly equal to the one that was
found previously in Eqs. �37� and �38�; the colloidal pair
interaction, however, reduces to a purely DLVO interaction,
i.e., the factor A we found before, is now equal to 0.
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